One-Electron Activation of CO by a Rhodium(II) Porphyrin Bimetalloradical Complex and Concerted Reactions of Two (RhCO)• Units

Xiao-Xiang Zhang, Gregory F. Parks, and Bradford B. Wayland*

Contribution from the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

Received July 2, 1996[⊗]

Abstract: A rhodium(II) porphyrin bimetalloradical complex, ${}^{Rh}(CH_2)_6Rh^{\bullet}(1)$ reacts with CO and ethene to form an ethanedionyl reductive coupling product, $Rh(CH_2)_6Rh(\mu$ -C(O)C(O)) (2), and an ethylene-bridged complex, $Rh(CH_2)_6Rh(\mu$ -CH₂CH₂) (4), respectively. Reaction of 1 with 1,3-butadiene proceeds by a 1,4-addition to yield a four-carbon-bridged complex, $Rh(CH_2)_6Rh(\mu$ -CH₂CH=CHCH₂) (5). ¹H NMR spectra of 2 and 4 manifest the inherent chirality of two-carbon-bridged tethered diporphyrin complexes. Solutions of 1 and CO react with H₂O, CH₃CH₂OH, and H₂ to produce multifunctionalized formyl complexes H=Rh(CH₂)₆Rh=CHO (6), H(O)C=Rh(CH₂)₆Rh=C(O)-OCH₂CH₃ (7), and H(O)C=Rh(CH₂)₆Rh=CHO (8), respectively, but fail to react to an observable extent with methane. Reactivity studies indicate that solutions of 1 and CO function as a source of a species that contains two carbonyl groups (${}^{\circ}$ [OCRh(CH₂)₆RhCO]^{\circ}) (3) that are activated toward one-electron reactions at the carbonyl carbon. Reactions of 3 with substrates (H₂O, C₂H₅OH, H₂) are discussed in terms of a proposed pathway where two metalloformyl radicals ([MCO]^{\circ}) and the substrate occur in a four-centered transition state (Rh=C(O)^{\circ}-··A···B···(O)C=Rh).

Introduction

Rhodium(II) porphyrins have previously been shown to form carbon monoxide complexes (((por)RhCO)) where CO is activated toward one-electron reactions at the carbonyl carbon.^{1,2} Reactions of [(por)RhCO]• with sources of X• that form (por)-Rh-C(O)X complexes illustrate the formal relationship of [(por)RhCO]• species with the formyl radical (HC(O)•).¹ Prominent examples include dimerization through -(O)C-C(O)bonding to form 1,2-ethanedionyl complexes, (por)Rh-C(O)-C(O)-Rh(por),² and reactions with H atom sources that produce formyl complexes, (por)Rh-CHO.³ Samarium(II) complexes which are exceptionally strong reducing agents also produce carbon monoxide coupling through one-electron activation of CO.⁴ Diporphyrin complexes of rhodium(II) (•Rh(CH₂)₆Rh•) (1) have recently been reported to accomplish relatively fast methane C-H bond activation by the concerted reaction of the two metalloradical centers.⁵ In this paper we report on reactivity studies of •Rh(CH₂)₆Rh• (1) and CO with a series of substrates (H₂O, C₂H₅OH, H₂) where the observed products are consistent with reactions of two one-electron-activated CO fragments in a diradical molecular unit, •[OCRh(CH₂)₆RhCO]• (3).

[®] Abstract published in Advance ACS Abstracts, August 15, 1997.

(1) (a) Wayland, B. B.; Sherry, A. E.; Poszmik, G.; Bunn, A. G. J. Am. Chem. Soc. **1992**, 114, 1673. (b) Sherry, A. E.; Wayland, B. B. J. Am. Chem. Soc. **1989**, 111, 5010.

Results

Preparation of a Rhodium(II) Porphyrin Bimetalloradical Complex. A diporphyrin ligand where the porphyrin units are tethered by a diether $(-O(CH_2)_6O-)$ spacer was prepared and converted to the dirhodium(II) derivative by procedures outlined in Scheme 1.^{5–8} The dimethyl derivative photolyzes in benzene to form a dirhodium(II) complex (•Rh(CH₂)₆Rh•) (1) which is

^{(2) (}a) Wayland, B. B.; Woods, B. A.; Coffin, V. L. Organometallics
1986, 5, 1059. (b) Wayland, B. B.; Sherry, A. E.; Coffin, V. L. J. Chem. Soc., Chem. Commun. 1989, 662. (c) Coffin, V. L.; Brennen, W.; Wayland, B. B. J. Am. Chem. Soc. 1988, 110, 6063.

^{(3) (}a) Wayland, B. B.; Woods, B. A. J. Chem. Soc., Chem. Commun. 1981, 700. (b) Wayland, B. B.; Woods, B. A.; Pierce, R. J. Am. Chem. Soc. 1982, 104, 302. (c) Paonessa, R. S.; Thomas, N. C.; Halpern, J. J. Am. Chem. Soc. 1985, 107, 4333.

^{(4) (}a) Evans, W. J.; Drummond, D. K.; Chamberlain, L. R.; Doedens, R. J.; Bott, S. G.; Zhang, H.; Atwood, J. L. J. Am. Chem. Soc. 1988, 110, 4983. (b) Evans, W. J.; Drummond, D. K. J. Am. Chem. Soc. 1988, 110, 2772. (c) Evans, W. J.; Grate, J. W.; Doedens, R. J. J. Am. Chem. Soc. 1985, 107, 1671.

^{(5) (}a) Zhang, X.-X.; Wayland, B. B. J. Am. Chem. Soc. 1994, 116, 7897.
(b) Zhang, X.-X.; Wayland, B. B. Manuscript in preparation.

^{(6) (}a) Lindsey, J. S.; Wagner, R. W. J. Org. Chem. 1989, 54, 828. (b) Little, R. G. J. Heterocycl. Chem. 1978, 15, 203.

^{(7) (}a) Sherry, A. E.; Wayland, B. B. J. Am. Chem. Soc. 1990, 112, 1259.
(b) Wayland, B. B.; Ba, S.; Sherry, A. E. J. Am. Chem. Soc. 1991, 113, 5305.

Activation of CO by a Rhodium(II) Porphyrin Complex

Figure 1. ¹H NMR for the pyrrole of $Rh(CH_2)_6Rh(\mu$ -C(O)C(O)) (2) in C₆D₆ (296 K).

shown to be a persistent bimetalloradical through observation of Curie behavior for the porphyrin pyrrole contact shifts (350– 200 K). EPR parameters for **1** in toluene glass (90 K) ($g_{\parallel} =$ 1.93, $g_{\perp} = 2.66$; $A(^{103}\text{Rh})(g_{\parallel})=$ 159 MHz)¹ are characteristic of a low-spin rhodium(II) species with a $(d_{xy})^2(d_{xz}d_{yz})^4d_z^{21}$ electron configuration. The steric requirements of the diporphyrin ligand that contains six mesityl groups precludes intraand intermolecular Rh–Rh bonding and provides a stable rhodium(II) porphyrin bimetalloradical complex, •Rh(CH₂)₆Rh• (**1**)⁵ (Scheme 1).

Reaction of 'Rh(CH₂)₆Rh' (1) with CO, CH₂=CH₂, and CH₂=CHCH=CH₂. (a) Reaction of 1 with CO. Benzene solutions of 1 react with CO (P_{CO} = 0.3-0.9 atm, T = 295 K) to produce an equilibrium distribution of species containing CO where the 1,2-ethanedione complex (Rh(CH₂)₆Rh(\mu-C(O)C(O)) (2) (eq 1) greatly predominates. Compound 2 is the only

rhodium porphyrin species observed in the ¹H NMR for solutions of **1** and CO when the CO pressure is greater than 0.2 atm (T = 295 K). Several prominent features in the ¹H NMR of **2** include eight chemically inequivalent pyrrole hydrogen resonances (Figure 1) and diastereotopic CH₂ groups in the diether tether ($-O(CH_2)_6O-$). The ¹³C NMR of the ¹³C(O) derivative of **2** displays an AA'XX' pattern characteristic of the ¹⁰³Rh⁻¹³C(O)¹³C(O)⁻Rh¹⁰³ unit that is closely related to analogous ((por)Rh)₂(μ ⁻¹³C(O)¹³C(O)) complexes.^{1,2} The AA'XX' pattern for **2** is simulated by using the following parameters: δ ¹³C = 164.5, ¹J¹⁰³Rh⁻¹³C = 40 Hz, ²J¹⁰³Rh⁻¹³C = 9 Hz, ³J¹⁰³Rh⁻¹⁰³Rh = 4 Hz, ¹J¹³C⁻¹³C = 20 Hz.

Solvent evaporation from a frozen benzene solution of **2** produces a yellow-orange solid which as a Nujol mull displays two bands in the CO stretching region ($\nu_{CO} \approx 1780$, 1769 cm⁻¹; $\nu_{^{13}CO} \approx 1736$, 1725 cm⁻¹) which are very similar to those observed for (TXP)Rh–C(O)C(O)–Rh(TXP) ($\nu_{CO} \approx 1778$, 1767 cm⁻¹; $\nu_{^{13}CO} \approx 1738$, 1727 cm⁻¹)¹ and (TMP)Rh–C(O)-C(O)–Rh(TMP) ($\nu_{CO} \approx 1782$, 1770 cm⁻¹)¹ (TXP = tetra-xylylporphyrin; TMP = tetramesitylporphyrin). The ν_{CO} bands in the Nujol mull of **2** decline in intensity and disappear over a period of hours due to loss of CO. FAB MS for benzene solutions of **2** yields the parent ion for **1** as the highest mass species, indicating facile loss of CO from **2**. Attempts to grow single crystals of **2** for X-ray diffraction study have not yet been successful.

The pyrrole ¹H NMR resonances for **2** are relatively narrow below 295 K but broaden substantially as the temperature is elevated (300–350 K) ($\Delta \nu_{1/2}(\text{ex}) = \Delta \nu_{1/2}(\text{obs}) - \Delta \nu_{1/2}(\text{nat})$; $\Delta \nu_{1/2}(\text{ex})$ (**2**) = 0.75 ± 0.15 Hz (300 K); 2.30 ± 0.25 Hz (310

Figure 2. Determination of the activation parameters for the dissociation of Rh(CH₂)₆Rh(μ -C(O)C(O)) (2) into **•**[OCRh(CH₂)₆RhCO]**•** (3) using proton NMR line broadening of 2 as the observable ($k_f = \tau_d^{-1}$; $K^{\pm} = k_f(h/kT)$.

K); 7.0 \pm 0.8 Hz (320 K); 20 \pm 2 Hz (330 K)). The pyrrole hydrogen line broadening is ascribed to dissociation of **2** into the paramagnetic dicarbonyl diradical unit •[OCRh(CH₂)₆-RhCO]• (**3**) (eq 2) by (O)C-C(O) bond homolysis in analogy

with the previously reported dissociation of ((TMP)Rh)2(u-C(O)C(O) into $[(TMP)Rh-CO]^{\bullet}$ monomer fragments.¹ The contribution of exchange to the line width at half-height ($\Delta v_{1/2}$; $T_2^{-1}(ex) = \pi \Delta v_{1/2}$ is given by the general expression $T_2^{-1}(ex)$ $= \tau_{\rm d}^{-1} [(A\tau_{\rm p}/2)^2] [1 + (A\tau_{\rm p}/2)^2]^{-1}$, where $\tau_{\rm d}$ and $\tau_{\rm p}$ are the lifetimes of the nuclear spin states in the diamagnetic and paramagnetic species and A is the electron-nuclear coupling constant for the nucleus being observed.⁹ When $(A\tau_p/2)^2 \gg 1$, $T_2^{-1}(ex) = \tau_d^{-1} = k_f$, where k_f is the rate constant for dissociation.^{7,10} A relatively long electron spin relaxation time $(\tau_p > 10^{-5} \text{ s}^{-1})$ and moderate pyrrole hydrogen-electron coupling constant ($A > 10^6 \text{ s}^{-1}$) fulfill these limiting conditions so that $T_2^{-1}(ex)$ equals the rate constant for dissociation. Evaluation of the activation parameters for reaction 2 gives $\Delta H_2^{\ddagger} = 21 \pm 1 \text{ kcal mol}^{-1} \text{ and } \Delta S_2^{\ddagger} = 13 \pm 3 \text{ cal } \mathrm{K}^{-1} \text{ mol}^{-1}$ (Figure 2). ΔH_2^{\ddagger} is effectively equal to and ΔS_2^{\ddagger} smaller than the corresponding values for $((TMP)Rh)_2(\mu-C(O)C(O))$ (ΔH^{\ddagger} = 21.3 \pm 0.8 kcal mol⁻¹ and ΔS^{\ddagger} = 22 \pm 3 cal K⁻¹ mol⁻¹).¹

(b) Reaction of 1 with Ethene. Benzene solutions of •Rh(CH₂)₆Rh• (1) react with ethene (P_{CH₂=CH₂} \approx 0.4 atm, *T* = 295 K) to generate an ethylene-bridged complex, Rh(CH₂)₆Rh-(μ -CH₂CH₂) (4), as the exclusive observed product (eq 3). Prominent features in the ¹H NMR of 4 include eight pyrrole resonances, diasteriotopic CH₂ groups in the diether ($-O(CH_2)_6O-$) tether, and distinctive high-field multiplets associated with diasteriotopic CH₂ groups in the bridging ethylene unit ($\delta_{CH(A)} = -7.81$, $\delta_{CH(B)} = -8.24$). Repeating this experiment with ¹³CH₂=¹³CH₂ results in ¹³C splitting of

⁽⁸⁾ Ogoshi, H.; Setsune, J.; Omura, T.; Yoshida, Z. J. Am. Chem. Soc. 1975, 97, 6461.

^{(9) (}a) Johnson, C. S., Jr. Advances in Magnetic Resonance; Academic Press: New York, 1965; Vol. 1. (b) McConnel, H. M.; Berger, S. B. J. Chem. Phys. **1957**, 27, 230. (c) Kreilich, R. W.; Weissman, S. I. J. Am. Chem. Soc. **1966**, 88, 2645. (d) Williams, D. J.; Kreilich, R. W. J. Am. Chem. Soc. **1968**, 90, 2775. (e) Williams, D. J.; Kreilich, R. W. J. Am. Chem. Soc. **1967**, 89, 3408.

⁽¹⁰⁾ Wayland, B. B.; Coffin, V. L.; Farnos, M. D. Inorg. Chem. 1988, 27, 2745.

the two high-field multiplets (${}^{1}J_{{}^{13}C-H} = 144 \text{ Hz}$) (Figure 3). The ${}^{1}\text{H}$ -decoupled ${}^{13}\text{C}$ NMR of the ethylene bridge in the (${}^{13}\text{CH}_2{}_2{}_2$ derivative of **4** appears as an AA'XX' pattern (Figure 4) that is simulated by using the following parameters: $\delta^{13}\text{C} = 19.34 \text{ ppm}, {}^{1}J_{{}^{103}\text{Rh}-{}^{13}\text{C}} = 30.2 \text{ Hz}, {}^{2}J_{{}^{103}}\text{Rh}-{}^{13}\text{C} = -3.2 \text{ Hz}, {}^{1}J_{{}^{13}\text{C}-{}^{13}\text{C}} = 32.4 \text{ Hz}, {}^{3}J_{{}^{103}}\text{Rh}-{}^{103}\text{Rh} \approx 0.2 \text{ Hz}.$

(c) Reaction of 1 with 1,3-Butadiene. Benzene solutions of 1 react with 1,3-butadiene ($P_{C_4H_6} \approx 0.4$ atm) to produce a four-carbon-bridged complex, Rh(CH₂)₆Rh(μ -CH₂CH=CHCH₂) (5) (eq 4). The ¹H NMR of 5 shows only three resolved pyrrole

resonances with intensity ratios of 1:1:2, chemically equivalent CH₂ groups in the diether $(-O(CH_2)_6O-)$ tether, and high-field resonances for the CH₂(dd, -5.32) and CH (t, -2.24) groups in the bridging $-CH_2CH=CHCH_2-$ unit.

Reaction of 1 and CO with H₂O, C₂H₅OH, H₂, and CH₄. (a) **Reaction of 1 and CO with Water.** Addition of H₂O to a benzene solution of **1** and CO (P_{CO} = 0.4 atm; T = 295 K) results in the formation of a single species observed in the ¹H NMR that is assigned as the hydrido-formyl complex H-Rh(CH₂)₆Rh-CHO (**6**) (eq 5). When ¹³CO is used,

concomitant formation of **6** and ¹³CO₂ ($\delta^{13}_{CO_2} = 124$ ppm) with the disappearance of **2** is observed in the ¹³C NMR. The ¹H NMR spectrum of **6** has characteristic resonances for a rhodium formyl unit ($\delta_{CHO} = 3.66$; ²*J*¹⁰³_{Rh-CHO} = 1.3 Hz) and a rhodium hydride fragment ($\delta_{Rh-H} = -40.07$; ¹*J*¹⁰³_{Rh-H} = 44.5 Hz) (Figure 5a), as well as chemically inequivalent methylene groups in the diether tether ($\delta_{OCH_2(CH_2)ACH_2O} = 3.92$, 3.90). Repeating this experiment with ¹³CO in toluene results in ¹³C splitting of the formyl hydrogen into a doublet of doublets (¹*J*¹³_{CHO} = 197.5 Hz). The ¹H-coupled ¹³C NMR spectrum of the formyl units in the ¹³CO derivative of **6** appears as a doublet of doublets from ¹⁰³Rh and ¹H coupling ($\delta^{13}_{CHO} = 193.7$; ¹*J*¹⁰³_{Rh-}¹³_C = 30.2 Hz; ¹*J*_{H-¹³C} = 197.5 Hz) (Figure 5b).

(b) Reaction of 1 and CO with Ethanol. Addition of ethanol to a benzene solution of 1 and CO ($P_{CO} = 0.45$ atm)

Figure 3. (a) ¹H NMR of the Rh $-CH_2-CH_2-Rh$ unit of **4** in C₆D₆ (296 K). (b) ¹H NMR for the carbon-13 derivative of **4**.

Figure 4. Proton-decoupled ¹³C NMR spectrum of the ethylene-bridged (Rh⁻¹³CH₂⁻¹³CH₂–Rh) unit in the carbon-13 derivative of **4** in C₆D₆ (296 K) (AA'XX'; δ^{13}_{C} = 19.34 ppm; ¹J¹⁰³_{Rh}⁻¹³_C = 30.2 Hz, ²J¹⁰³_{Rh}⁻¹³_C = -3.2 Hz, ¹J¹³_C⁻¹³_C = 32.4 Hz, ³J¹⁰³_{Rh}⁻¹⁰³_{Rh} = 0.2 Hz).

results exclusively in the formation of a formyl-ester complex, $H(O)C-Rh(CH_2)_6Rh-C(O)OCH_2CH_3$ (7) (eq 6). The ¹H NMR

spectrum of **7** displays a characteristic formyl resonance (δ_{CHO} = 3.66; ${}^{2}J_{^{103}Rh-CHO}$ = 1.6 Hz), quartet and triplet resonances for the organometallic ester group (Rh–C(O)OCH₂CH₃) (δ_{CH_2} = 1.38; δ_{CH_3} = -1.04; ${}^{3}J_{H-H}$ = 6.8 Hz), and chemically inequivalent methylene groups in the diether tether ($\delta_{OCH_2(CH_3)_4CH_2O}$ = 3.92, 3.90). Repeating this experiment with ¹³CO results in ¹³C splitting of the formyl peak (${}^{1}J_{H-1^3C}$ = 197.5 Hz) and the CH₂ group of the organometallic ester unit (${}^{3}J_{^{13}C(O)OCH_2}$ = 4.4 Hz). The ¹H-coupled ¹³C NMR spectrum of the ¹³CO derivative of **7** shows a doublet of doublets ($\delta_{^{13}CHO}$ = 194.51; ${}^{1}J_{^{103}Rh-^{13}C}$ Activation of CO by a Rhodium(II) Porphyrin Complex

Figure 5. NMR spectra for the ¹³C derivative of **6** (H–Rh(CH₂)₆Rh– ¹³CHO) in CD₃C₆D₅ (296 K): (a) ¹H NMR of the rhodium hydride group, Rh–H (δ = -40.07 ppm; ¹J¹⁰³_{Rh–H} = 43.4 Hz); (b) protoncoupled ¹³C NMR of the formyl group, Rh–¹³CHO (δ = 193.7 ppm; ¹J¹⁰³_{Rh–¹³C} = 30.2 Hz, ¹J_{H–¹³C} = 197.5 Hz).

= 30.2 Hz; ${}^{1}J_{H^{-13}C}$ = 197.5 Hz) for the Rh $^{-13}$ CHO unit and a doublet of triplets ($\delta^{13}C$ = 148.29; ${}^{1}J^{103}Rh^{-13}C$ = 46.5 Hz; ${}^{3}J_{H^{-13}C}$ = 4.4 Hz) for the Rh $^{-13}$ C(O)OCH₂CH₃ unit (Figure 6).

(c) Sequential Reaction of 1 with CO and H₂. When benzene solutions of ${}^{\circ}Rh(CH_2)_{6}Rh^{\circ}$ (1) are pressurized sequentially with carbon monoxide ($P_{CO} = 0.52$ atm) and then H₂ ($P_{H_2} = 0.22$ atm, $P_{CO} = 0.52$ atm; T = 295 K) compound 2 forms initially and then reacts away to produce a diformyl complex, H(O)C-Rh(CH₂)₆Rh-CHO (8) (eq 7), as the only species

observed by NMR. The ¹H NMR spectrum of **8** gives a characteristic Rh–CHO resonance ($\delta^{13}_{CHO} = 3.66$; ² $J^{103}_{Rh-CHO} = 1.4$ Hz) which becomes a doublet of doublets in the ¹³CO derivative of **8** (¹ $J_{^{13}C-H} = 197.5$ Hz) (Figure 7a). The ¹H-coupled ¹³C NMR spectrum in toluene of the formyl units in the ¹³CO derivative of **8** appears as a doublet of doublets from ¹⁰³Rh and ¹H coupling ($\delta^{13}_{CHO} = 193.65$; ¹ $J^{103}_{Rh-^{13}C} = 30.2$ Hz; ¹ $J_{H-^{13}C} = 197.5$ Hz) (Figure 7b).

(d) Sequential Reaction of 1 with H₂ and CO. Benzene solutions of 1 react rapidly with H₂ ($P_{H_2} = 0.3$ atm) to form the dihydrido complex H-Rh(CH₂)₆Rh-H (9) (eq 8),⁵ which when subsequently pressurized with CO ($P_{CO} = 0.5$ atm; $P_{H_2} = 0.3$ atm; T = 295 K) fails to produce observable quantities of formyl complexes 6 and 8 over a period of weeks.

(e) Reaction of 1 and CO with Methane. When benzene solutions of 1 were sequentially pressurized with carbon monoxide ($P_{CO} = 0.37$ atm) and then CH₄ ($P_{CH_4} = 0.53$ atm), the dionyl complex 2 formed and persisted. Neither the desired

Figure 6. (a) Proton-coupled ¹³C NMR spectrum of the formyl and ester groups in the carbon-13 derivative of $H(O)^{13}C-Rh(CH_2)_6Rh-^{13}C(O)OCH_2CH_3$ (7) in C₆D₆ (296 K). (b) Expanded ¹³C NMR spectrum of the Rh-¹³CHO unit ($\delta^{13}_{CHO} = 194.51$, $^{1}J^{103}_{Rh-^{13}C} = 30.2$ Hz, $^{1}J_{H-^{13}C} = 197.5$ Hz). (c) Expanded ¹³C NMR of the Rh-¹³C(O)OCH₂CH₃ unit ($\delta^{13}_{C(O)OCH_2CH_3} = 148.29$, $^{1}J^{103}_{Rh-^{13}C} = 46.5$ Hz, $^{3}J_{H-^{13}C} = 4.4$ Hz).

product of CH₄ activation, H(O)C-Rh(CH₂)₆Rh-C(O)CH₃ (**10**) (eq 9), nor any other products containing Rh-CHO or Rh-

C(O)CH₃ units were detected by ¹H NMR. A very slow reaction (\sim 2 weeks) ultimately results in formation of the hydrido– methyl complex, H–Rh(CH₂)₆Rh–CH₃ (**11**)⁴ (eq 10). The ¹H

NMR spectrum of **11** displays a high-field doublet ($\delta_{Rh-CH_3} = -5.29$; ${}^2J^{103}_{Rh-H} = 3.0$ Hz) for the Rh–CH₃ unit and a high-field doublet ($\delta_{Rh-H} = -40.07$; ${}^1J^{103}_{Rh-H} = 43.4$ Hz) for the rhodium hydride fragment. Compound **11** presumably forms from reaction of CH₄ with the small concentration of **1** (eq 10)⁵ in equilibrium with **2** (eq 1).

Discussion

Reactions of 1 with CO, CH₂=CH₂, and CH₂=CH-CH=CH₂. The dirhodium(II) diporphyrin bimetallo-

Figure 7. NMR spectra of the formyl unit in the carbon-13 derivative of $H(O)^{13}C-Rh(CH_2)_6Rh^{-13}CHO$ (**8**) in $CD_3C_6D_5$ (296 K): (a) ¹H NMR ($\delta^{13}_{CHO} = 3.66$ ppm; ¹ $J^{13}_{C-H} = 197.5$ Hz, ² $J^{103}_{Rh-CHO} = 1.4$ Hz); (b) proton-coupled ¹³C NMR ($\delta^{13}_{CHO} = 193.65$ ppm; ¹ $J^{103}_{Rh^{-13}C} = 30.2$ Hz, ¹ $J_{H^{-13}C} = 197.5$ Hz).

radical, •Rh(CH₂)Rh• (1), reacts with CO, CH₂=CH₂, and CH2=CHCH=CH2 to form complexes where reduced substrate units bridge two rhodium centers, $Rh(CH_2)_6 Rh(\mu-C(O)-C(O))$ (2), $Rh(CH_2)_6Rh(\mu-CH_2CH_2)$ (4), and $Rh(CH_2)_6Rh(\mu-CH_2 CH=CHCH_2$) (5), respectively. There is no evidence for a dirhodium ketone (Rh-C(O)-Rh) which is a prominent species in the reaction of $[(OEP)Rh]_2$ with CO (OEP = octaethylporphyrin).² The bent Rh–C(O)–Rh unit causes steric interactions between mesityl groups on adjacent porphyrin units that inhibit formation of the one-carbon-bridged dimetal ketone (M-C(O)-M) in a manner similar to that previously observed for the (TMP)Rh system.¹ ¹H NMR spectra of 2, 4, and 5 show that these molecules appear to have two chemically equivalent units consisting of the porphyrin and half of the diether tether and bridging substrate. The chemical equivalencies presumably result from the dynamic molecular structure passing through a conformation with a C_2 axis that bisects the diether tether and bridging substrate units.

Observation of eight pyrrole hydrogen doublets from four diastereotopic pyrrole H–C–C–H AB patterns and diastereotopic CH₂ AB patterns for the diether tether (–OCH₂(CH₂)₄-CH₂O–) are manifestations in the ¹H NMR of the inherent chirality of **2** and **4**. The dynamic structural changes for **2** and **4** must not pass through a conformation that contains an improper axis of rotation on the NMR time scale. Rotation of the substrate bridges of **2** and **4** (Rh–C(O)C(O)–Rh, Rh–CH₂CH₂–Rh) would interconvert the enantiomers by passing through a conformation with an effective plane of symmetry (*S*₁). This rotation in **2** and **4** must be inhibited by the constraints of the tightly packed diporphyrin pocket containing the two-carbon-bridged substrates. Inhibition of motions

for the bridging substrate sandwiched between two porphyrins has previously been proposed as the reason for observing geometric isomers for (OEP)Rh–CH₂CH(CO₂CH₃)–Rh(OEP) and related complexes.¹¹ Chemical equivalence of the CH₂ groups in both the diether tether and the substrate bridge (–CH₂CH–CHCH₂–) as well as several pyrrole hydrogen equivalencies in Rh(CH₂)₆Rh(μ -CH₂CH=CHCH₂) (**5**) indicate that the inherent chirality for the static molecule is not manifested by the NMR spectra (T = 270-295 K). Introduction of the four-carbon-bridged substrate in **5** apparently opens the diporphyrin pocket enough to permit sufficiently fast rotation of the bridging substrate such that the enantiomers are rapidly interconverted on the NMR time scale.

Reactions of 1 and CO with H₂O, C₂H₅OH, H₂, and CH₄. Rhodium(II) porphyrins have previously been observed to react with CO to produce 17-electron [Rh–CO][•] units that have reactivity patterns similar to that of the formyl radical [HCO][•].^{1,2,4} Hydrogen atom abstractions from (por)Rh–H and HSnR₃ that produce formyl complexes ((por)Rh–CHO),^{1,4} reaction with (por)Rh[•] to form dimetal ketone complexes ((por)Rh–C(O)– Rh(por)),² and dimerization by RhC(O)–C(O)Rh bond formation² illustrate the activation of the [(por)Rh–CO][•] unit toward one-electron reactions at the carbonyl carbon.

Solutions of **1** and CO primarily contain the dionyl-bridged complex **2**, but small equilibrium concentrations of **1**, along with the mono- and bis-CO complexes of **1** must also be present. ¹H NMR line broadening for **2** associated with RhC(O)–C(O)– Rh bond homolysis indicates that the system resulting from **1** and CO is a thermal source for a dirhodium dicarbonyl diradical, [•][OCRh(CH₂)₆RhCO]• (**3**). An objective of this study was to evaluate the potential of diradical species like **3** to activate substrates (A, B) through reaction with two metalloformyl radical units in analogy with the reported reaction of the dimetalloradical •Rh(CH₂)₆Rh• (**1**) with CH₄ and H₂.⁵

Solutions of **1** and CO which contain **2** as the predominant species react with H_2O exclusively to produce a hydrido–formyl complex (H-Rh(CH₂)₆Rh–CHO (**6**)) which does not react further with CO at a finite rate to yield the diformyl complex $H(O)C-Rh(CH_2)_6Rh-CHO$ (**8**). Observation that **6** forms as the exclusive product simultaneously with disappearance of **2** is compatible with a rate-limiting reaction of **3** with water to form an intermediate formyl–carboxylic acid complex (HO(O)C–Rh(CH₂)₆Rh–CHO (**12**)) that rapidly loses CO₂ to form **6**. Elimination of CO₂ is a general reaction of metallo carboxylic acid complexes¹² and was previously observed for rhodium porphyrin derivatives.^{4b,13}

Additional evidence for a dominant concerted reaction of two metalloformyl radical units ((RhCO)[•]) in **3** is obtained from the reaction of **1** and CO with ethanol (eq 6) that yields the formyl– ester complex $CH_3CH_2OC(O)-Rh(CH_2)_6Rh-CHO$ (**7**) as the predominant product observed in the ¹H NMR. Reaction of ethanol with (Rh-CO)[•] units in different molecules of **3** would yield symmetrically derivatized carbonyl products (H(O)C-Rh(CH₂)₆Rh-CHO, CH₃CH₂O(O)C-Rh(CH₂)₆Rh-C(O)OCH₂-

⁽¹¹⁾ Wayland, B. B.; Poszmik, G.; Fryd, M. Organometallics 1992, 11, 3534.

^{(12) (}a) Van Voorhees, S. L.; Wayland, B. B. *Organometallics* **1987**, *6*, 204. (b) Bunn, A. G.; Wei, M. Wayland, B. B. *Organometallics* **1994**, *6*, 3390.

 ^{(13) (}a) Baker, F. C.; Hendriksen, D. E.; Eisenberg, R. J. Am. Chem.
 Soc. 1980, 102, 1020. (b) Ford, P. C. Acc. Chem. Res. 1981, 14, 31. (c)
 Yoshida, T.; Okano, T.; Fuda, Y.; Otsuka, S. Inorg. Chem. 1981, 103, 3411.

CH₃) in addition to 7. While it is not possible to distinguish between symmetrically derivatized carbonyl products in the ¹H NMR, we believe that the lack of any intermediates suggests the predominance of compound 7. In addition, nonconcerted reaction of ethanol with a monocarbonyl complex ($^{Rh}(CH_2)_6$ -RhCO) would form species containing Rh–H units. Since these Rh–H units are readily distinguished by ¹H NMR and are not present at any time during the reaction, we conclude that the most probable pathway involves reaction of two (RhCO) units from the same dionyl complex. Reaction 6 is envisioned to occur through a four-centered transition state^{7,14–16} that produces concerted formation of the rhodium ester and formyl units in 7.

Reaction of H₂ with **1** and CO produces a diformyl complex, H(O)C-Rh(CH₂)₆Rh-CHO (**8**) (eq 7), as the exclusive rhodium porphyrin species observed by ¹H NMR. Reaction 7 does not proceed through rhodium hydride intermediates because both H-Rh(CH₂)₆Rh-H (**9**) and H-Rh(CH₂)₆Rh-CHO (**6**) have been independently shown to not react at a finite rate with any species present in a solution of **1** and CO (**2**, **3**, CO) to produce **8**. The sterically demanding porphyrin ligands prohibit achieving the transition state for hydrogen atom transfer from the Rh-H unit to the (RhCO)• fragment which inhibits formation of metalloformyl species by the pathway that operates in the (OEP)Rh system.^{4c} The apparent simultaneous formation of two formyl units in **8** implies that this process occurs in concert with cleavage of the H-H bond through a four-centered transition state.¹⁴

When solutions of **1** and CO are put in contact with CH₄, no products with either formyl or acyl groups are observed to form. The potential reaction with CH₄ to produce CH₃(O)C–Rh(CH₂)₆-Rh–CHO (**10**) is expected to be thermodynamically less favorable than that for H₂ by \sim 6–8 kcal mol⁻¹,¹⁷ and this may account for the absence of observable concentrations of **10**; however, this negative result could have its origin in either or both kinetic and thermodynamic factors.

The overall reactions of **1** and CO with C_2H_5OH , H_2 , and CH₄ to form **7**, **8**, and **10**, respectively (eqs 6, 7, and 9) are all highly thermodynamically favorable.^{17b} In these reactions an intermediate dionyl complex (**2**) forms, and it is the equilibrium of **2** with the products of reactions 6, 7, and 9 that actually determines the equilibrium distribution of rhodium porphyrin complexes in solution (eqs 11–13). Thermochemical estimates

$$\mathbf{2} + \mathbf{C}_{2}\mathbf{H}_{5}\mathbf{OH} \rightleftharpoons \mathbf{H}(\mathbf{O})\mathbf{C} - \mathbf{Rh}(\mathbf{CH}_{2})_{6} - \mathbf{C}(\mathbf{O})\mathbf{OC}_{2}\mathbf{H}_{5}$$
(11)

$$\mathbf{2} + \mathbf{H}_2 \rightleftharpoons \mathbf{H}(\mathbf{O})\mathbf{C} - \mathbf{R}\mathbf{h}(\mathbf{C}\mathbf{H}_2)_6\mathbf{R}\mathbf{h} - \mathbf{C}(\mathbf{O})\mathbf{H}$$
(12)

$$2 + CH_4 \rightleftharpoons H(O)C - Rh(CH_2)_6Rh - C(O)CH_3$$
 (13)

indicate that the ethanol reaction with **2** is highly favorable $(\Delta H_{11}^{\circ} \approx -21 \text{ kcal mol}^{-1}, \Delta G_{11}^{\circ}(298 \text{ K}) \approx -13 \text{ kcal mol}^{-1})$, the H₂ reaction is slightly favorable $(\Delta H_{12}^{\circ} \approx -11 \text{ kcal mol}^{-1}, \Delta G_{12}^{\circ}(298 \text{ K}) \approx -3 \text{ kcal mol}^{-1})$, and the reaction of CH₄ is

probably unfavorable ($\Delta H_{13}^{\circ} \approx -5$ kcal mol⁻¹, $\Delta G_{13}^{\circ}(298 \text{ K}) \approx$ +3 kcal mol⁻¹).¹⁷⁻¹⁹ In order to obtain clearly favorable thermodynamics for methane C–H bond reactions like that depicted in reactions 9 and 13, the dionyl (O)C–C(O) bond must be weakened or eliminated.

Any of a set of related pathways where the H and X (X =OH, OR, H) units from H-X add to the carbonyl carbon centers of the dionyl 2 could account for the observed reaction products. The observations are most easily reconciled by pathways that involve four-centered transition states that direct a concerted cleavage of the H-X and formation of Rh-C(O)H and Rh-C(O)X units. Polar substrates (H₂O, CH₃CH₂OH) could involve interaction with a carbonyl carbon of 2 to preorganize formation of the Rh–C(O)OR unit prior to (O)C-C(O) homolysis and hydrogen transfer. However, this form of preorganization is not readily envisioned for the H_2 reaction (eq 12). Reaction of CH₄ may be kinetically inhibited by requiring a more restrictive near linear four-centered transition state which is not demanded by the other substrates. Incorporating more sterically demanding substituents on the tethered diporphyrin complexes such that the dionyl (O)C-C(O) bond is weakened can be expected to reveal whether or not a facile pathway is available for simultaneous activation of CO and methane.

Experimental Section

General Considerations. All manipulations were performed on a high-vacuum line equipped with a Welch Duo-Seal vacuum pump or in an inert atmosphere box unless otherwise noted. All reagents were purchased from Aldrich or Strem Chemicals. Pyrrole was distilled and [Rh(CO)₂Cl]₂ was sublimed prior to use. Deuterated NMR solvents such as benzene and toluene were degassed by freeze-pump-thaw cycles to remove oxygen and then refluxed over sodium/benzophenone ketyl until the indicator turned purple to remove water. Chloroform, methylene chloride, and 1,2-dichloroethane used in synthetic procedures were purified by washing three times with water followed by chromatography on grade 1 alumina for the removal of ethanol and water. Substrates were degassed by freeze-pump-thaw cycles and stored over molecular sieves. Research grade hydrogen, methane, ethene, 1,3butadiene and carbon monoxide were purchased from Matheson Gas Products or Aldrich and used without further purification. Carbon-13-labeled carbon monoxide was purchased from Cambridge Isotope Laboratories, Inc. Prepurified nitrogen and argon gases used for the inert atmosphere box were purchased from Airco or MG Industries.

Proton NMR spectra were obtained on a Bruker WP200SY, a Bruker AC-250, or a Bruker AMX-500 interfaced to an Aspect 300 computer at ambient temperature. All spectra were referenced using the residual solvent peak as an internal standard (benzene- d_6 , $\delta = 7.155$; toluene $d_8, \delta = 2.09$). Carbon-13 NMR spectra were obtained on the AMX-500 instrument equipped with a carbon-13 probe. Variable-temperature ¹H NMR spectra were obtained on an IBM-Bruker AF200SY or IBM Bruker WP200SY spectrometer equipped with a Bruker VT-1000 temperature controller or boil-off from liquid nitrogen when the temperature needed is below 220 K. The probe was cooled with an FTS systems refrigerator unit equipped with a temperature controller. The temperatures in the probe were referenced against an external sample of methanol (below ambient) and ethylene glycol (above ambient). The samples were kept away from light prior to and during the experiments. Fast atom bombardment mass spectrometry (FAB-MS) data were recorded on a VG-ZAB-E spectrometer with a cesium

⁽¹⁴⁾ Wayland, B. B.; Ba, S.; Sherry, A. E. Inorg. Chem. 1992, 31, 148.
(15) Simandi, L. I.; Budo-Zahonyi, E.; Szeverenyi, Z.; Nemeth, S. J. Chem. Soc., Dalton Trans. 1980, 276.

^{(16) (}a) Halpern, J.; Pribinic, M. *Inorg. Chem.* **1970**, *9*, 2626. (b) Halpern, J. *Inorg. Chim. Acta* **1982**, 62, 31. (c) Halpern, J. *Inorg. Chim. Acta* **1983**, 77, L105.

^{(17) (}a) Thermochemical estimates are obtained by using standard organic bond enthalpies (kcal mol⁻¹),¹⁸ H–H (104), H₃C–H (105), (O)C–H (87), (O)C–CH₃ (82), (C=O)–(C=O) (70), RO–H (104), (O)C–OR (97), using (por)Rh–C(O)X (X = H, CH₃, OR) (59) and (por)Rh–H (60) and estimating $\Delta H_1^{\circ}(37)$ (1 + 2CO \rightarrow 2) from prior thermodynamic results for ((por)Rh)₂(μ -C(O)C(O)) complexes.¹⁹ (b) $\Delta H_6^{\circ} \approx -58$ kcal mol⁻¹, ΔG_6° (298 K) ≈ -34 kcal mol⁻¹, $\Delta H_7^{\circ} \approx -48$ kcal mol⁻¹, ΔG_7° (298 K) ≈ -18 kcal mol⁻¹.¹⁷⁻¹⁹

^{(18) (}a) Wagman, D. D.; Evans, W. H.; Parker, V. B.; Halow, I.; Bailey, S. M.; Schumm, R. H. NBS Technical Note 270–3. Institute for Basic Standards, National Bureau of Standards: Washington, DC, 1968. (b) Cox, J. D.; Pilcher, G. *Thermochemistry of Organic and Organometallic Compounds*; Academic: New York, 1970. (c) Benson, S. W. *Thermochemical Kinetics*, John Wiley & Sons: New York, 1968.

^{(19) (}a) Wayland, B. B.; Coffin, V. L.; Sherry, A. E.; Brennen, W. R. In ACS Symposium Series; Marks, T., Ed.; ACS: Washington, DC, 1990; No. 428, Chapter 10, pp 148–158. (b) Wayland, B. B. Polyhedron **1988**, 7, 1545. (c) Wayland, B. B. In Energetics of Organometallic Species; Simões, J. A. M., Ed.; Kluwer Publishers: The Netherlands, 1992; p 73.

ion gun. Electronic spectra were recorded with a Hewlett-Packard UV 8452 instrument interfaced to an IBM PC. Fourier transform infrared (FT-IR) spectra were taken on an IBM 97 instrument interfaced to an Aspect 2000 computer, or with a Perkin-Elmer 1760 FT-IR spectrometer. Samples were prepared as either KBr pellets or Nujol mulls. Electron paramagnetic resonance spectra were obtained by use of an ER 100 D X-band spectrometer. Temperature measurements were calibrated with a Bruker Model VT unit using N₂ as the cooling source (283–90 K). All EPR experiments were performed at 90 K unless otherwise noted and calibrated using diphenylpicrylhydrazine (DPPH, $\langle g \rangle = 2.0036$) as an external standard.

Rh(**CH**₂)₆**Rh**(μ -**C**(**O**)**C**(**O**)) (2). The dirhodium α -diketone complex $Rh(CH_2)_6Rh(\mu$ -C(O)C(O)) (2) was formed from the reaction of carbon monoxide with the rhodium(II) porphyrin bimetalloradical complex •Rh(CH₂)₆Rh• (1): ¹H NMR (C₆D₆) δ 8.85, 8.65, 8.62, 8.39, 8.36, 8.26, 8.22, 8.19 (each a doublet of 2H, ${}^{3}J_{H-H} = 4.7$ Hz, pyrrole); 7.76, 7.38 (dd, 2H each, ${}^{3}J_{H-H} = 8.2$ Hz, ${}^{4}J_{H-H} = 2.2$ Hz, *o*-phenyl); 7.17 (dd, 2H, ${}^{3}J_{H-H} = 8.2$ Hz, ${}^{4}J_{H-H} = 2.6$ Hz, *m*-phenyl), 7.05 (dd, 2H, ${}^{3}J_{H-H}$ = 8.4 Hz, ${}^{4}J_{H-H}$ = 2.6 Hz, *m*-phenyl), 7.32, 7.24, 7.12, 7.04, 6.98, 6.87 (s, 2H each, *m*-phenyl); 3.99 (m, 2H, ${}^{3}J_{H-H} = 5.0$ Hz, $-OCH_aH_b-$), 3.94 (m, 2H, ${}^{3}J_{H-H} = 5.0$ Hz, $-OCH_aH_b$); 2.46, 2.41, 2.40 (s, 6H each, p-CH₃); 1.62, 1.49, 1.48, 1.35, 1.27, 1.16 (s, 6H each, o-CH3); 1.78 (m, 4H, -OCH2CH2-), 1.54 (m, 4H, -CCH2CH2C-); ¹³C NMR (CD₃C₆D₅) δ 164.47 (AA'XX' m, 2¹³C, Rh(CH₂)₆Rh(μ- $^{13}C(O)$ - $^{13}C(O)$), six transitions observed at ±12, ±18, and ±27 Hz relative to the center of δ 164.47 ppm); IR (Nujol mull) $\nu_{\rm CO} \approx 1780$, 1769 cm^{-1} ; $\nu_{1^{3}CO} \approx 1736$, 1725 cm^{-1} .

 $Rh(CH_2)_6Rh(\mu-CH_2CH_2)$ (4). The dirhodium ethylene-bridged complex $Rh(CH_2)_6Rh(\mu-CH_2CH_2)$ (4) was formed from the reaction of ethene with the rhodium(II) porphyrin bimetalloradical complex •Rh(CH₂)₆Rh• (1): ¹H NMR (C₆D₆) δ 8.77, 8.52, 8.43, 8.36, 8.35, 8.20, 8.12, 8.06 (each a doublet of 2H, ${}^{3}J_{H-H} = 4.7$ Hz, pyrrole); 7.89, 7.69 (dd, 2H each, ${}^{3}J_{H-H} = 8.3$ Hz, ${}^{4}J_{H-H} = 2.2$ Hz, *o*-phenyl); 7.47, 7.06 (dd, 2H each, ${}^{3}J_{H-H} = 8.3$ Hz, ${}^{4}J_{H-H} = 2.6$ Hz, *m*-phenyl), 7.25, 7.19, 7.12, 6.97, 6.94, 6.88 (s, 2H each, *m*-phenyl); 3.96 (m, 2H, ${}^{3}J_{H-H} =$ 5.0 Hz, $-OCH_aH_b-$), 3.91 (m, 2H, ${}^{3}J_{H-H} = 5.0$ Hz, $-OCH_aH_b$); 2.44, 2.42, 2.41 (s, 6H each, p-CH₃); 2.39, 1.78, 1.54, 1.40, 1.20, 1.10 (s, 6H each, o-CH₃); 1.78 (m, 4H, -OCH₂CH₂-), 1.49 (m, 4H, -CCH₂-CH₂C-); -7.81 (dm, 2H, ${}^{1}J_{{}^{13}C-H}$ = 144 Hz, Rh(CH₂)₆Rh(μ - ${}^{13}CH_{a}H_{b}$ - 13 CH_aH_b)), -8.24 (dm, 2H, $^{1}J_{^{13}C-H} = 144$ Hz, Rh(CH₂)₆Rh(μ - 13 CH_aH_b- ${}^{13}\text{CH}_{a}H_{b}$)); ${}^{13}\text{C}$ NMR (C₆D₆) δ 19.34 (AA'XX' m, 2 ${}^{13}\text{C}$, ${}^{1}J_{103}_{\text{Rh}-{}^{13}\text{C}}$ = 30.2 Hz, ${}^{2}J{}^{103}{}_{Rh}{}^{-13}{}_{C} = -3.2$ Hz, ${}^{1}J{}^{13}{}_{C}{}^{-13}{}_{C} = 32.4$ Hz, ${}^{3}J{}^{103}{}_{Rh}{}^{-103}{}_{Rh} \approx 0.2$ Hz, Rh(CH₂)₆Rh(μ -¹³CH₂-¹³CH₂)).

Rh(**CH**₂)₆**Rh**(*μ*-**CH**₂**CH**=**CHCH**₂) (5). The dirhodium four-carbonbridged complex Rh(CH₂)₆Rh(*μ*-CH₂CH=CHCH₂) (5) was formed from the reaction of 1,3-butadiene with the rhodium(II) porphyrin bimetalloradical complex •Rh(CH₂)₆Rh• (1): ¹H NMR (C₆D₆) δ 8.35, 8.27 (each a doublet of 4H, ³J_{H-H} = 4.8 Hz, pyrrole), 8.32 (s, 8H, pyrrole); 7.71, 7.39 (dd, 2H each, ³J_{H-H} = 8.3 Hz, ⁴J_{H-H} = 2.2 Hz, *o*-phenyl); 7.17, 7.01 (dd, 2H each, ³J_{H-H} = 8.3 Hz, ⁴J_{H-H} = 2.6 Hz, *m*-phenyl); 7.26, 7.12 (s, 4H each, *m*-phenyl), 7.02, 7.00 (s, 2H each, *m*-phenyl); 4.00 (t, 4H, ³J_{H-H} = 5.5 Hz, −OCH₂−), 2.55 (s, 12H, p-CH₃), 2.39 (s, 6H, *p*-CH₃); 1.94, 1.50 (s, 12H, *o*-CH₃), 1.61, 1.57 (s, 6H, *o*-CH₃); 1.91 (m, 4H, −OCH₂CH₂−), 1.70 (m, 4H, −CCH₂CH₂C−) −2.24 (t, 2H, Rh(CH₂)₆Rh(*μ*-CH₂CH=CHCH₂)), −5.32 (dd, 4H, Rh(CH₂)₆Rh(*μ*-CH₂CH=CHCH₂)). **H**-**Rh**(**CH**₂)₆**Rh**-**CHO** (6). The rhodium(III) diformyl complex H-Rh(CH₂)₆Rh-CHO (6) was formed from the reaction of water with the dirhodium α-diketone complex Rh(CH₂)₆Rh(μ -C(O)C(O)) (2): ¹H NMR (C₆D₆) δ 9.03, 8.97, 8.88, 8.86, 8.85, 8.84, 8.82, 8.81 (each a doublet of 2H, ³J_{H-H} = 4.9 Hz, pyrrole); 8.16, 8.14, 8.02, 8.00 (dd, 1H each, ³J_{H-H} = 8.3 Hz, ⁴J_{H-H} = 2.2 Hz, *o*-phenyl); 7.31, 7.29, 7.13, 7.10 (dd, 1H each, ³J_{H-H} = 8.3 Hz, ⁴J_{H-H} = 2.6 Hz, *m*-phenyl), 7.24, 7.07 (s, 4H each, *m*-phenyl), 7.18, 7.11 (s, 2H each, *m*-phenyl); 3.92 (t, 2H, ³J_{H-H} = 6.1 Hz, -OCH₂-), 3.90 (t, 2H, ³J_{H-H} = 6.1 Hz, -OCH₂-); 2.45 (s, 12H, *p*-CH₃), 2.43 (s, 6H, *p*-CH₃); 2.29, 1.76 (s, 12H each, *o*-CH₃), 2.16, 1.79(s, 6H each, *o*-CH₃); 1.86 (m, 4H, -OCH₂CH₂-), 1.58 (m, 4H, -CCH₂CH₂C-), 3.66 (d, 1H, ²J¹⁰³_{Rh}-CHO = 1.3 Hz, Rh-CHO), -40.07 (d, 1H, ¹J¹⁰³_{Rh}-H = 44.5 Hz, Rh-H); ¹³C NMR (CD₃C₆D₅) δ 193.7 (dd, 1¹³C, ¹J¹⁰³_{Rh}-¹³C = 30.2 Hz, ¹J_H-¹³C = 197.5 Hz, Rh⁻¹³CHO).

H(O)C-Rh(CH₂)₆Rh-C(O)OCH₂CH₃ (7). The rhodium(III) diformyl complex H(O)C-Rh(CH₂)₆Rh-C(O)OCH₂CH₃ (7) was formed from the reaction of ethanol with the dirhodium α -diketone complex Rh(CH₂)₆Rh(μ-C(O)C(O)) (2): ¹H NMR (C₆D₆) δ 9.02, 8.95, 8.89, 8.86, 8.83, 8.81, 8.80, 8.79 (each a doublet of 2H, ${}^{3}J_{H-H} = 4.9$ Hz, pyrrole); 8.18, 8.14, 8.01, 7.89 (dd, 1H each, ${}^{3}J_{H-H} = 8.3$ Hz, ${}^{4}J_{H-H} =$ 2.2 Hz, o-phenyl); 7.26, 7.22, 7.10, 7.08 (dd, 1H each, ${}^{3}J_{H-H} = 8.3$ Hz, ${}^{4}J_{H-H} = 2.6$ Hz, *m*-phenyl), 7.20, 7.10 (s, 4H each, *m*-phenyl), 7.18, 7.14 (s, 2H each, *m*-phenyl); 3.92 (t, 2H, ${}^{3}J_{H-H} = 6.1$ Hz, $-OCH_2-$), 3.90(t, 2H, ${}^{3}J_{H-H} = 6.1$ Hz, $-OCH_2-$); 2.45 (s, 12H, p-CH₃), 2.39 (s, 6H, p-CH₃); 2.26 (s, 12H, o-CH₃), 1.93, 1.87, 1.77, 1.42 (s, 6H each, o-CH₃); 1.87 (m, 4H, -OCH₂CH₂-), 1.57 (m, 4H, $-CCH_2CH_2C-$), 3.66 (dd, 1H, ${}^{1}J_{{}^{13}C-H} = 197.6$ Hz, ${}^{2}J_{{}^{103}Rh-CHO} = 1.6$ Hz, Rh⁻¹³CHO), 1.38 (qd, 2H, ${}^{3}J_{13}_{C-H} = 4.4$ Hz, ${}^{3}J_{H-H} = 6.8$ Hz, $Rh^{-13}C(O)OCH_2CH_3)$, -1.04 (t, 3H, ${}^{3}J_{H-H} = 6.8$ Hz, $Rh^{-13}C(O)$ -OCH₂CH₃); ¹³C NMR (C₆D₆) δ 148.29 (dt, 1¹³C, ¹J_{103</sup>_{Rh-13}C = 46.5} Hz, ${}^{3}J_{H^{-13}C} = 4.4$ Hz, Rh $-{}^{13}C(O)OCH_2CH_3)$, 194.51 (dd, 1 ${}^{13}C$, ${}^{1}J_{103}_{\text{Rh}-13}_{\text{C}} = 30.2 \text{ Hz}, {}^{1}J_{\text{H}-13}_{\text{C}} = 197.5 \text{ Hz}, \text{Rh}-{}^{13}\text{CHO}$).

H(**O**)**C**-**Rh**(**CH**₂)₆**Rh**-**CHO** (8). The rhodium(III) diformyl complex H(O)C-Rh(CH₂)₆Rh-CHO (8) was formed from the reaction of hydrogen with the dirhodium α-diketone complex Rh(CH₂)₆Rh(μ -C(O)C(O)) (2): ¹H NMR (C₆D₆) δ 9.02, 8.87, 8.86, 8.85 (each a doublet of 2H, ³J_{H-H} = 4.9 Hz, pyrrole); 8.16, 7.94 (dd, 1H each, ³J_{H-H} = 8.4 Hz, ⁴J_{H-H} = 2.1 Hz, *o*-phenyl); 7.30, 7.12 (dd, 1H each, ³J_{H-H} = 8.4 Hz, ⁴J_{H-H} = 2.6 Hz, *m*-phenyl); 7.24 (s, 4H, *m*-phenyl), 7.20 (s, 2H, *m*-phenyl), 7.12 (s, 6H, *m*-phenyl); 3.91 (t, 4H, ³J_{H-H} = 6.1 Hz, -OCH₂-); 2.45 (s, 12H, *p*-CH₃), 2.43 (s, 6H, *p*-CH₃); 2.28, 1.76 (s, 12H each, *o*-CH₃), 2.05, 1.87 (s, 6H each, *o*-CH₃); 1.85 (m, 4H, -OCH₂CH₂-), 1.58 (m, 4H, -CCH₂CH₂C-), 3.66 (d, 1H, ²J¹⁰³_{Rh}-CHO = 1.3 Hz, Rh-CHO), -40.07 (d, 1H, ¹J¹⁰³_{Rh}-H = 44.5 Hz, Rh-H); ¹³C NMR (CD₃C₆D₅) δ 193.65 (dd, 1¹³C, ¹J¹⁰³_{Rh}-¹³_C = 30.2 Hz, ¹J_H-¹³_C = 197.5 Hz, Rh⁻¹³CHO).

Acknowledgment. Support for this research by the Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, Grant DE-FG02-86ER 13615, is gratefully acknowledged.

JA962248N